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Stability of some low-order approximations for the Stokes problem
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SUMMARY

Two-level low-order finite element approximations are considered for the inhomogeneous Stokes equations.
The elements introduced are attractive because of their simplicity and computational efficiency. In this
paper, the stability of a Q1(h)–Q1(2h) approximation is analysed for general geometries. Using the
macroelement technique, we prove the stability condition for both two- and three-dimensional problems.
As a result, optimal rates of convergence are found for the velocity and pressure approximations. Numerical
results for three test problems are presented. We observe that for the computed examples, the accuracy of
the two-level bilinear approximation is compared favourably with some standard finite elements. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we discuss the stability of some low-order finite elements for the Stokes problem.
Hence, we will, without loss of generality, consider the Stokes equations with inhomogeneous
Dirichlet boundary conditions:

−��u + ∇ p = f in �

divu= 0 in �

u= g on �

(1)

where u, p, � and g are, respectively, velocity, pressure, kinematic viscosity (positive and constant),
and body force, all of which are assumed to be nondimensionalized.
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We assume that � is an open bounded connected subset of Rd , d = 2 or 3, with smooth
boundary �. Further, we assume that f∈ (H−1(�))d , g∈ (H1/2(�))d , and the boundary condition
satisfies

∫
� g ·n ds = 0. Where, H−1(�) and H1/2(�) are the usual Sobolev spaces, and n denotes

the outward normal.
A mixed finite element approximation of (1) leads to the discrete problem. Find uh ∈Vh and

ph ∈ Qh such that

a(uh, vh) + b(vh, ph) = (f, vh) ∀vh ∈Vh

b(uh, qh) = 0 ∀qh ∈ Qh
(2)

where the bilinear forms a(uh, vh) and b(uh, qh) are defined by

a(uh, vh) =
∫

�
∇uh · ∇vh dx and b(uh, qh) = −

∫
�
qh divuh dx (3)

Stable and accurate solution of (2) requires that Vh and Qh satisfy the inf–sup condition:

Inf
qh∈Qh
qh �= 0

Sup
vh∈Vh
vh �= 0

∫
� qh div vh dx

‖qh‖Q‖vh‖V �� (4)

where �>0 is independent of the mesh parameter h; see [1, 2].
To circumvent this stability constraint, stabilized formulations which consist in modifying the

weak formulation by including some mesh-dependent terms such as jumps of the pressures across
boundary elements were proposed, see [3, 4]. More recently, methods based on pressure stabilization
have also been analysed in [5–9].

In this paper, we prove the stability of Q1(h)–Q1(2h) approximations for general quadrilaterals
and hexahedra introduced in [10]. Even though, the stability of the two-level bilinear approximation
discussed in this paper can be proved using the Verfurth trick combined with an inf–sup like
condition [11, pp. 255–256], the proof given here is more general and a lot simpler. In [12], the
tridimensional Taylor–Hood approximation Q2(h)–Q1(h) has been analysed and it is shown that
this approximation is stable. To stabilize nonconstant pressure components, though, the use of quite
large macroelements (assuming the existence of neighbouring elements in a required direction)
and a suitable high-order quadrature rule were necessary. The analysis given here for the stability
of a two-level continuous trilinear approximation, to our knowledge, is new and represents an
important step in trying to justify the use of the proposed approximation for solving fluid flow
problems. Since both velocity and pressure are bilinear (respectively trilinear), it is shown that
macroelement containing only two elements (respectively four elements) of the original mesh �2h
are needed to stabilize the nonconstant pressure components, and the stability is achieved using
composite Simpson’s rule. Below, we review briefly the macroelement technique and state the
main theorem. In Section 3, we analyse a bilinear approximation for quadrilateral elements and
show that it is stable. In Section 4, we extend our analysis to the trilinear approximation and again
show that the proposed approximation is stable. Hence, optimal rates of convergence are obtained
in the norms of the spaces [H1(�)]d and L2(�). In Section 5, the numerical results for three 2d
test problems are presented and the performance of the bilinear approximation is discussed.
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STABILITY OF SOME LOW-ORDER APPROXIMATIONS FOR THE STOKES PROBLEM 755

2. STABILITY ANALYSIS

Suppose we have a pair of finite element spaces Vh and Qh . We define a macroelement M ∈ Mh
as a union of several neighbouring elements of a finite element partition �h , satisfying the usual
regularity assumptions [13]. Further, for a macroelement M ∈ Mh , we define the following local
spaces:

V0,M =Vh ∩ (H1
0 (M))d , QM ={q|M | q ∈ Qh}

NM = {q ∈ QM | (div v, q)= 0, ∀v∈V0,M } (5)

Denote by �h the set of sides (respectively the set of faces in a three-dimensional space), of the
elements of �h interior to �. Then, we can prove the following theorem [14].
Theorem 1
Let Mh be a macroelement partition of the elements of �h such that

H1. Each M ∈ Mh is equivalent to one class �i , i = 1, r , of a fixed set of macroelements.
H2. For each M ∈ �i , i = 1, r , the space NM is one dimensional consisting of functions that

are constant on M .
H3. Each K ∈ �h is contained in a finite number of macroelements.
H4. Each T ∈ �h is contained in a finite number of macroelements.

Then, the approximate spaces Vh and Qh satisfy stability condition (4).

Remark 2
In general, the main effort to fulfil the hypotheses of the above theorem is to verify H2. In fact, in
practice H1, H3, and H4 are met whenever the triangulation �h is regular and the macroelements
are reasonable.

We note that nonoverlapping macroelement partitions are not covered by the previous theorem
because of hypothesis H4. However, in [15, 16] a similar result was proved.

3. BILINEAR APPROXIMATION

We let �2h be a regular partition of � into convex quadrilaterals and denote by �h the partition
obtained from �2h by subdividing each element K into four quadrilaterals. We then define the
approximate spaces

Vh = {v∈ (H1(�) ∩C(�))2|v|K ∈ (Q1(K ))2, ∀K ∈ �h}
Qh = {q ∈ L2

0(�) ∩C(�)|q|K ∈ Q1(K ),∀K ∈ �2h}
(6)

where the corresponding degrees of freedom, given on a reference element, are sketched in Figure 1,
and C(�) denotes the set of functions that are continuous on � (closure of �). Note that this
partition leads to one class of equivalent macroelements, and the hypotheses H1, H3, and H4 hold.
Hence, to show that the above approximation is stable, we need to check H2.
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Figure 1. A two-dimensional macroelement partition.

Theorem 3
Suppose that M is a macroelement obtained by grouping two elements of �2h . Then, the local
null-space NM is one dimensional, consisting of those functions which are constant on M .

Proof
Suppose that M is a union of two regular quadrilaterals as in Figure 1, then M̂ = K̂1 ∪ K̂2, and
K̂i = ⋃4

j=1 K̂i j , K̂i j ∈ �h for i = 1, 2. Further, we define a bilinear mapping FM : M̂ −→ M such

that FM = (F1, F2) is continuous on each Ki ∈ �h and satisfies FM (K̂i ) = Ki , where K̂i are the
corresponding quadrilaterals shown in Figure 1.

Hence, for u∈V0,M and p ∈ QM

(divu, p)M = −(u,∇ p)M =−
2∑

i=1

∫
K̂i

ûT( x̂) J−T
F ( x̂) ∇ p̂( x̂) |JF ( x̂)| d̂x (7)

where JF ( x̂) denotes the Jacobian matrix of FM , |JF ( x̂)| its determinant, and J−T
F ( x̂) the transpose

matrix of J−1
F ( x̂). Performing the necessary computation, we obtain

[̂uT( x̂)J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)|]|K̂i j

∈ Q2(K̂i j )

and

ûT( x̂)J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)| is continuous on Ki , i = 1, 2

Hence, Simpson’s composite rule gives the exact value of the integral in (7).
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We let p ∈ NM and choose u∈V0,M such that x̂7( 12 ,
1
2 ), respectively x̂9( 32 ,

1
2 ), is the only node

at which û has nonvanishing degrees of freedom. Then, condition (divu, p)M = 0 implies

J−T
F ( x̂i )∇ p̂( x̂i )|JF ( x̂i )| = 0, i = 7, 9 (8)

Therefore,

∇ p̂( x̂i ) = 0 for i = 7, 9 since |JF ( x̂)| �= 0 ∀̂x∈ K̂i , i = 1, 2 (9)

Setting pi = p(xi ) = p̂( x̂i ) for i = 1, 2, . . . , 6 and using (9), we obtain the relations

p1 = p3 = p5 = �

p2 = p4 = p6 = �
(10)

where � and � are two positive constants.
We then consider û∈V0,M such that x̂8(1, 1

2 ) is the only node at which û has nonvanishing
degrees of freedom. Hence, (divu, p)M = 0 implies

ûT( x̂8 )[(J−T
F ( x̂8 )∇ p̂( x̂8 )|JF ( x̂8 ))|K̂1

+ (J−T
F ( x̂8 )∇ p̂( x̂8 )|JF ( x̂8 )|)|K̂2

] = 0 (11)

Choosing u(x8) = û( x̂8 ) =−−−→
x̂6̂x3, a straightforward computation gives

J−1
F ( x̂8 )̂u( x̂8 )|K̂i

= [0, 1]T, i = 1, 2 (12)

Since on K̂i , p̂i (̂x, ŷ) = ai + bi x̂ + ci ŷ + di x̂ ŷ, using (10) we get

�2 p̂( x̂8 )|K̂1
= c1 + d1 = p5 − p4

�2 p̂( x̂8 )|K̂2
= c2 + d2 = p5 − p4

where �l ≡ �/�xl , l = 1, d ,

i.e. �2 p̂( x̂8 )|K̂1
= �2 p̂( x̂8 )|K̂2

≡ �2 p̂( x̂8 ) = p5 − p4 (13)

Hence, from (11), (12), and (13) we obtain

�2 p̂( x̂8 )[|JF ( x̂8 )||K̂1
+ |JF ( x̂8 )||K̂2

] = 0 i.e. �2 p̂( x̂8 ) = 0 (14)

From which the required result follows

i.e. p1 = p2 = p3 = p4 = p5 = p6 �

4. TRILINEAR APPROXIMATION

We let �2h be a regular partition of a three-dimensional region � into convex hexahedra and denote
by �h the partition obtained from �2h by subdividing each K into eight hexahedra. We then define
the approximate spaces

Vh = {v∈ (H1(�) ∩C(�))3 | v|K ∈ (Q1(K ))3, ∀K ∈ �h}
Qh = {q ∈ L2

0(�) ∩C(�) | q|K ∈ Q1(K ), ∀K ∈ �2h}
(15)
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Figure 2. A three-dimensional macroelement partition. Coordinates of the reference macroelement ver-
tices: X̂1(0, 0, 0), X̂2(1, 0, 0), X̂3(1, 1, 0), X̂4(0, 1, 0), X̂5(0, 0, 1), X̂6(1, 0, 1), X̂7(1, 1, 1), X̂8(0, 1, 1),
X̂9(0, 0,−1), X̂10(1, 0,−1), X̂11(1, 1,−1), X̂12(0, 1,−1), X̂13(−1, 0, 0), X̂14(−1, 1, 0), X̂15(−1, 0, 1),

X̂16(−1, 1, 1), X̂17(−1, 0,−1) and X̂18(−1, 1,−1).

Note that this mesh leads to one class of equivalent macroelements for which the hypotheses H1,
H3, and H4 hold. Hence, to show that the above approximation is stable we need to check H2.

Theorem 4
Suppose that M is a macroelement obtained by grouping four elements of �2h . Then, the local
null-space NM is one dimensional, consisting of those functions which are constant on M .

Proof
Suppose that M is a union of four regular hexahedra as in Figure 2, then M̂ = ⋃4

i=1 K̂i , Ki ∈ �2h
and K̂i = ⋃8

j=1 K̂i j , K̂i j ∈ �h , for i = 1, 4. Further, we define a trilinear mapping FM : M̂ −→ M
such that FM = (F1, F2, F3) is a trilinear continuous mapping on each Ki ∈ �h and satisfies
FM (K̂i ) = Ki , where K̂i are the corresponding cubes shown in Figure 2.
We then define the points x̂A( 12 ,

1
2 ,

1
2 ), x̂B( 12 ,

1
2 , 0), x̂C ( 12 ,

1
2 , − 1

2 ), x̂D(0, 1
2 ,

1
2 ), x̂E (0, 1

2 , − 1
2 ),

x̂F (− 1
2 ,

1
2 ,

1
2 ), x̂G(− 1

2 ,
1
2 ,0), x̂H (− 1

2 ,
1
2 , − 1

2 ) and x̂S(0, 1
2 , 0). Hence, for u∈V0,M and p ∈ QM

we have

(divu, p)M =−(u,∇ p)M =−
4∑

i=1

∫
K̂i

ûT( x̂)J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)| d̂x (16)

Since FM is trilinear on each Ki ∈ �2h and the pressure is also trilinear, the computation of
J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)| gives

[J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)|]|K̂i

= [R1( x̂), R2( x̂), R3( x̂)]T ∈ (Q2(K̂i ))
3 (17)
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Moreover, since û ( x̂) is trilinear on each K̂i j and continuous on K̂i , we have

[̂uT( x̂)J−T
F ( x̂)∇ p̂( x̂)|JF ( x̂)|]|K̂i

∈ Q3(K̂i )

Thus, Simpson’s composite rule gives the exact value of the integral in (16).
We let p ∈ NM and choose û∈V0,M such that x̂A (respectively x̂C , x̂F and x̂H ) is the only node

at which û has nonvanishing degrees of freedom. Then, condition (divu, p)M = 0 implies

∇ p( x̂) = 0, x̂= x̂A, x̂C , x̂F and x̂H since |JF ( x̂)| �= 0 ∀̂x∈ Ki , i = 1, 4 (18)

Choosing û∈V0,M such that x̂B is the only node at which û has nonvanishing degrees of freedom,
then (divu, p)M = 0 implies

(|JF (̂xB)|J−T
F (̂xB)∇ p̂(̂xB))|K̂1

+ (|JF (̂xB)|J−T
F (̂xB)∇ p̂(̂xB))|K̂2

= 0 (19)

We denote by �i j , j = 1, 3, the column vectors of the matrix (|JF (̂xB)|J−T
F (̂xB))|K̂i

, i = 1, 2.
Then, a straightforward calculation gives

�13 = �23 and � p̂(̂xB)|K̂1
= �1 p̂(̂xB)|K̂2

≡ �1 p̂(̂xB) (20)

Hence, (19) can be written as

[�11 + �21, �12 + �22, �13][�1 p̂(̂xB), �2 p̂(̂xB), �3 p̂(̂xB)|K̂1
+ �3 p̂(̂xB)|K̂2

]T = 0 (21)

Due to the regularity of �h, (�11 + �21, �12 + �22, �12 + �22) is a nonsingular matrix. Hence, we
get

�l p̂(̂xB) = 0, l = 1, 2 (22)

Repeating the same argument, respectively, for the macroelement interior points x̂D, x̂E and x̂G ,
we obtain

�l p̂(̂xD) = 0, l = 2, 3; �l p̂(̂xE ) = 0, l = 2, 3; and �l p̂(̂xG) = 0, l = 1, 2 (23)

Therefore, using (18), (22), and (23), we obtain

p1 = p3 = p6 = p8 = p10 = p12 = p14 = p15 = p17 = �

p2 = p4 = p5 = p7 = p9 = p11 = p13 = p16 = p18 = �
(24)

where pi = p̂( x̂i ), i = 1, 18; and � and � are two positive constants.
Thus, to complete the proof, we need to show that � = �. Choose û∈V0,M such that x̂S is the

only node at which û has nonvanishing degrees of freedom. Then (divu, p)M = 0 implies

(J−T
F (̂xS)∇ p̂(̂xS|JF (̂xS)|)|K̂1

+ (J−T
F (̂xS)∇ p̂(̂xS)|JF (̂xS)|)|K̂2

+(J−T
F (̂xS)∇ p̂(̂xS)|JF (̂xS)|)|K̂3

+ (J−T
F (̂xS)∇ p̂(̂xS)|JF (̂xS)|)|K̂4

= 0 (25)
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Denote by �i j the columns of the matrix (J−T
F (̂xS)|JF (̂xS)|)|K̂i

, i = 1, 4. Since on each K̂i ,

p̂i (̂x, ŷ, ẑ) = ai + bi x̂ + ci ŷ + di ẑ + ei x̂ ŷ + fi x̂ ẑ + gi ŷ̂z + hi x̂ ŷ̂z, then by similar arguments as
above, we can show the following:

�11 = �31, �13 = �23, �21 = �41, �33 = �43

�1 p̂(̂xS)|K̂1
= �1 p̂(̂xS)|K̂2

, �1 p̂(̂xS)|K̂3
= �1 p̂(̂xS)|K̂4

�3 p̂(̂xS)|K̂1
= �3 p̂(̂xS)|K̂3

, �3 p̂(̂xS)|K̂2
= �3 p̂(̂xS)|K̂4

(26)

and

�2 p̂(̂xS)|K̂1
= �2 p̂(̂xS)|K̂2

= �2 p̂(̂xS)|K̂3
= �2 p̂(̂xS)|K̂4

≡ �2 p̂(̂xS) = p4 − p1 (27)

Hence, using (26), (27), and (25), we obtain⎡
⎢⎢⎣

�11 + �21

�12 + �22 + �32 + �42

�13 + �33

⎤
⎥⎥⎦
T ⎡

⎢⎢⎣
�1 p̂(̂xS)|K̂1

+ �1 p̂(̂xS)|K̂3

�2 p̂(̂xS)

�3 p̂(̂xS)|K̂1
+ �3 p̂(̂xS)|K̂2

⎤
⎥⎥⎦ = 0 (28)

Due to the regularity of �2h , [�11 + �21, �12 + �22 + �32 + �42, �13 + �33] is a nonsingular matrix
and we obtain

�2 p̂(̂xS) = 0 (29)

Thus, from (24), (27), and (29) follows the required result, i.e. NM is one-dimensional consisting
of functions that are constant on any macroelement M . �

Theorem 5
Suppose that problem (1) is approximated by regular finite elements as defined in (6) (respectively
(15)). Then, for u∈ (H2(�))d ∩H1

g(�) and p ∈ H1(�), with H1
g(�) = {v∈ (H1(�))d | v|C= g},

the following error estimate holds:

‖u − uh‖1,� + ‖p − ph‖0,��Ch(|u|2,� + |p|1,�)

Moreover, if � is convex in R2 (or of class C2 in R3) we have the L2-error estimate

‖u − uh‖0,��Ch2(|u|2,� + |p|1,�)

Proof
The proof of the first error estimate follows directly from the stability condition (4), and the
L2-velocity error estimate is obtained using the Aubin–Nische trick (see [1, 11]). �

5. NUMERICAL RESULTS

In this section, numerical results for two-dimensional Stokes flows, for the case �= 1, are presented.
The performance of the two-level bilinear approximation is compared with the biquadratic–bilinear
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Table I. Error estimates of the stable bilinear approximation.

h ‖p − ph‖0,� ‖u − uh‖0,� ‖u − uh‖1,�
1
4 0.510647 0.886496× 10−2 0.159219
1
8 0.258356 0.180605× 10−2 0.752692× 10−1

1
16 0.125986 0.406626× 10−3 0.367024× 10−1

1
32 0.660900× 10−1 0.970542× 10−4 0.181718× 10−1

1
64 0.333788× 10−1 0.238471× 10−4 0.905162× 10−2

one. Also, displayed are the velocity and pressure norms which confirm the convergence rates
predicted by Theorem 3. For all problems, a preconditioned MINRES code is used to solve the
global algebraic linear system.

5.1. Test 1 problem

As a first problem, we consider a flow in the unit square [0, 1]× [0, 1]. The term f is chosen so
that the solution is:

u(x, y) = (ux , uy)
T = (x2, −2xy)T and p(x, y)= x2 + y2 + C

where C is a constant. Numerical results for this problem are displayed in Table I. The errors
‖p − ph‖0,� and ‖u− uh‖1,� converge at the predicted rates, while ‖u− uh‖0,� converges faster
than predicted. It is also observed that the method gives exact solution for the velocity components
at the grid points. Also, the pressure solution plotted in Figure 3 indicate favourable comparison
with the biquadratic–linear approximation. Further, the pressure plots predict the circular behaviour
of the solution and do not present any wiggles that are found when using regularization and penalty
type methods (see [17]).

5.2. Test 2 problem

The second problem consists in solving Stokes problem in the unit square [0, 1] × [0, 1], with
exact solution:

u(x, y)= (ux , uy)
T, p(x, y)= x2 − y2

with

ux = 2x2(1 − x2)y(1 − y)(1 − 2y), uy = −2x(1 − x)(1 − 2x)y2(1 − y2)

Numerical results for this problem are displayed in Table II. The displayed results indicate that
the errors ‖u− uh‖0,� and ‖u− uh‖1,� converge at the predicted rates, while ‖p − ph‖0,� seems
to converge at almost one degree higher than predicted. It is also observed, that eventhough the
velocity solution is a fourth-degree polynomial, the numerical results obtained for both the velocity
and pressure are comparable to the biquadratic solution as shown in Figure 4. This behaviour is
believed to be due to the symmetry of the problem.
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Figure 3. Pressure solution of test 1 problem on a 16× 16 grid: (a) using a Q1(h)–Q1(2h) approximation
and (b) using a Q2–Q1 approximation.

Table II. Error estimates of the stable bilinear approximation.

h ‖p − ph‖0,� ‖u − uh‖0,� ‖u − uh‖1,�
1
4 0.263523× 10−1 0.243569× 10−2 0.304875× 10−1

1
8 0.757418× 10−2 0.609685× 10−3 0.156370× 10−1

1
16 0.204403× 10−2 0.151712× 10−3 0.777448× 10−2

1
32 0.578548× 10−3 0.375650× 10−4 0.387329× 10−2

1
64 0.162971× 10−3 0.925248× 10−5 0.193278× 10−2

5.3. Lid-driven cavity flow

The third test problem is that of lid-driven cavity flow on the domain [−1, 1] × [−1, 1]. Our
aim here is to assess the performance of the two-level bilinear approximation using a graded
mesh near x =−1, x = 1, y =−1, and y = 1. We impose a regularized boundary condition, that
is ux (−1, y)= ux (1, y)= ux (x,−1)= 0 and ux (x, 1) = 1− x4; for −1�x�1. Numerical pressure
solutions obtained for a 16× 16 grid, using the two-level bilinear and the biquadratic–bilinear
approximations are displayed in Figure 5. Clearly, Figure 5 indicates that the two solutions are
comparable. Further, the streamlines are computed from the velocity solution, by solving Poisson’s
equation subject to a zero boundary condition, and are displayed in Figure 6. The latter illustrates
the recirculation of the flow at bottom corners which is consistent with what has been reported by
many researchers (see [18]).
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Figure 4. Pressure solution of test 2 problem on a 16× 16 grid: (a) using a Q1(h)–Q1(2h) approximation
and (b) using a Q2–Q1 approximation.
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Figure 5. Pressure solution on a 16× 16 grid: (a) current approach and (b) biquadratic approximation.
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Figure 6. Streamline plot and secondary recirculation at the bottom corners of the cavity domain: (a) current
approach and (b) using a Q2–Q1 approximation.

6. CONCLUSION

In this paper, we have analysed the stability of some low-order approximations for fluid flow
problems. The use of these elements is attractive because of the simplicity in handling the element
properties and this is expected to be useful for three-dimensional problems. The numerical results
for the two-level bilinear approximation clearly confirm the convergence rates predicted by the
theory and compare favourably with some standard finite elements.
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